NixOS Testing library

From NixOS Wiki
Jump to: navigation, search

The primary documentation for the NixOS VM testing framework is in the NixOS manual, and in the Nixpkgs manual. A tutorial can be found at [1].

The test infrastructure entry point is nixos/lib/testing.nix. Alternatively, for out-of-tree tests you can invoke it via Nixpkgs as the nixosTest function, which reuses your already evaluated Nixpkgs to generate your node configurations. The test infra relies on the qemu build-vm code to generate virtual machines.

It will generate a test driver (a wrapper of nixos/lib/test-driver/test-driver.py) in charge of creating the network. It will start one vde-switch and its associated socket per vlan (defined in virtualisation.vlans). IPs are assigned declaratively according to the number of vlan via the function `assignIPAddresses`.

The driver (of the form /nix/store/668bqxvsv6rn9hy8n4nmaps9ma2i5k4r-nixos-test-driver-<TESTNAME>) will launch the different vms passed as arguments. The wrapper `bin/nixos-run-vms` is in charge to start the driver with the correct VM script as arguments.

Once the driver is loaded, depending on the environment variables `tests` it will run in an interactive mode or run some perl code (`testScript`). In interactive mode, you can run `start_all` followed by `join_all` to start and keep the VM alive


How to debug tests ?

You can run the tests interactively as described in [2]. When you run `nix-build ./nixos/tests/login.nix`, the resulting output gives you a summary of the results, but to gain access to the VM, you can run

nix repl ./nixos/tests/login.nix

and see the ran VM via `driver.outPath`.


I don't see any prompt ? (qemu window pitch black)

Check the output for `malformed JSON string, neither array, object, number, string or atom, at character offset 0 (before "\x{0}\x{0}\x{0}\x{0}...") at /nix/store/1hkp2n6hz3ybf2rvkjkwrzgbjkrrakzl-update-users-groups.pl line 11`. You should purge the state present in rm -rf /tmp/vm-state-<VM_NAME>

Setting `virtualisation.vlans` does not create the expected interfaces

There are two sides to the problem: 1. By default the qemu-vm setups a `user` based nic: virtualisation.qemu.networkingOptions. You need to override the option to get rid of this interface. 2. As of this writing nixpkgs will generate interfaces starting from `eth1` (instead of `eth0`).


Keys: https://en.wikibooks.org/wiki/QEMU/Monitor#sendkey_keys


home-manager example

It is possible to use home-manager to manage packages per user. This example shows how to add home-manager to a single file configuration.

The complete `hmtest.nix` file content looks like the following:

 let
   nixpkgs = builtins.fetchTarball "https://github.com/nixOS/nixpkgs/archive/22.05.tar.gz";
   pkgs = import nixpkgs {};
   home-manager = builtins.fetchTarball "https://github.com/nix-community/home-manager/archive/release-22.05.tar.gz";
 in
   pkgs.nixosTest {
     nodes.machine = { config, pkgs, ... }: {
       imports = [
         (import "${home-manager}/nixos")
       ];
 
       boot.loader.systemd-boot.enable = true;
       boot.loader.efi.canTouchEfiVariables = true;
 
       services.xserver.enable = true;
       services.xserver.displayManager.gdm.enable = true;
       services.xserver.desktopManager.gnome.enable = true;
 
       users.users.alice = {
         isNormalUser = true;
         extraGroups = [ "wheel" ]; # Enable ‘sudo’ for the user.
       };
 
       home-manager.users.alice = {
         home.packages = [
           pkgs.firefox
           pkgs.thunderbird
         ];
       };
 
       system.stateVersion = "22.05";
     };
     testScript = {nodes, ...}: 
       machine.wait_for_unit("default.target")
       machine.succeed("su -- alice -c 'which firefox'")
       machine.fail("su -- root -c 'which firefox'")
     ;
   }

wayland application example

The configuration we are using is starting the gnome desktop manager using wayland. To test if a wayland application is working is more complicated because we need to automate the login into gnome and automated startup of the application. Additionally we need to enable access to gnome dbus interface. To do this we need to modify the configuration the automated start of the application including automated login to gnome/wayland


In the machine configuration we need to enable autologin for the user alice.


     services.xserver.displayManager.autoLogin.enable = true;
     services.xserver.displayManager.autoLogin.user = "alice";


To simplify our script we pin the uid of the user to 1000.

       uid = 1000;


We specify a service that auto start firefox after login, which is easier than doing this in the test script.

     environment.systemPackages = [
       (pkgs.makeAutostartItem {
         name = "firefox";
         package = pkgs.firefox;
       })
     ];


Because gnome doesn't allow the evaluation of javascript to get information about open windows we need to override the gnome-shell startup service to start gnome-shell in unsafe mode:


     systemd.user.services = {
       "org.gnome.Shell@wayland" = {
         serviceConfig = {
           ExecStart = [
             # Clear the list before overriding it.
             ""
             # Eval API is now internal so Shell needs to run in unsafe mode.
             "${pkgs.gnome.gnome-shell}/bin/gnome-shell --unsafe-mode"
           ];
         };
       };


The test script utilizes the gnome dbus interface to get a list of open wayland windows. we wait until firefox appear to be started and make a screenshot that will be found in the result folder.

   testScript = {nodes, ...}: let
     user = nodes.machine.config.users.users.alice;
     bus = "DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/${toString user.uid}/bus";
     gdbus = "${bus} gdbus";
     su = command: "su - ${user.name} -c '${command}'";
     gseval = "call --session -d org.gnome.Shell -o /org/gnome/Shell -m org.gnome.Shell.Eval";
     wmClass = su "${gdbus} ${gseval} global.display.focus_window.wm_class";
   in 
     machine.wait_until_succeeds("${wmClass} | grep -q 'firefox'")
     machine.sleep(20)
     machine.screenshot("screen")
   ;


The complete `firefoxtest.nix` file looks like the following:

 let
   nixpkgs = builtins.fetchTarball "https://github.com/nixOS/nixpkgs/archive/22.05.tar.gz";
   pkgs = import nixpkgs {};
   home-manager = builtins.fetchTarball "https://github.com/nix-community/home-manager/archive/release-22.05.tar.gz";
 in
   pkgs.nixosTest {
     nodes.machine = {...}: {
       imports = [
         (import "${home-manager}/nixos")
       ];
       boot.loader.systemd-boot.enable = true;
       boot.loader.efi.canTouchEfiVariables = true;
 
       services.xserver.enable = true;
       services.xserver.displayManager.gdm.enable = true;
       services.xserver.desktopManager.gnome.enable = true;
       services.xserver.displayManager.autoLogin.enable = true;
       services.xserver.displayManager.autoLogin.user = "alice";
 
       users.users.alice = {
         isNormalUser = true;
         extraGroups = ["wheel"]; # Enable ‘sudo’ for the user.
         uid = 1000;
       };
 
       home-manager.users.alice = {
         home.packages = [
           pkgs.firefox
           pkgs.thunderbird
         ];
       };
 
       system.stateVersion = "22.05";
 
       environment.systemPackages = [
         (pkgs.makeAutostartItem {
           name = "firefox";
           package = pkgs.firefox;
         })
       ];
 
       systemd.user.services = {
         "org.gnome.Shell@wayland" = {
           serviceConfig = {
             ExecStart = [
               # Clear the list before overriding it.
               ""
               # Eval API is now internal so Shell needs to run in unsafe mode.
               "${pkgs.gnome.gnome-shell}/bin/gnome-shell --unsafe-mode"
             ];
           };
         };
       };
     };
 
     testScript = {nodes, ...}: let
       user = nodes.machine.config.users.users.alice;
       #uid = toString user.uid;
       bus = "DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/${toString user.uid}/bus";
       gdbus = "${bus} gdbus";
       su = command: "su - ${user.name} -c '${command}'";
       gseval = "call --session -d org.gnome.Shell -o /org/gnome/Shell -m org.gnome.Shell.Eval";
       wmClass = su "${gdbus} ${gseval} global.display.focus_window.wm_class";
     in 
       machine.wait_until_succeeds("${wmClass} | grep -q 'firefox'")
       machine.sleep(20)
       machine.screenshot("screen")
     ;
   }

Tests that need multiple virtual machines

Tests can involve multiple virtual machines.

This example uses the use-case of a REST interface to a PostgreSQL database. The following example Nix expression is adapted from How to use NixOS for lightweight integration tests.

This tutorial follows PostgREST tutorial, a generic RESTful API for PostgreSQL.

If you skim over the official tutorial, you'll notice there's quite a bit of setup in order to test if all the steps work.

The setup includes:

- A virtual machine named `server` running PostgreSQL and PostgREST.

- A virtual machine named `client` running HTTP client queries using `curl`.

- A `testScript` orchestrating testing logic between `client` and `server`.

The complete `postgrest.nix` file looks like the following:

 let
   # Pin Nixpkgs, as some packages are broken in the 22.11 release
   nixpkgs = fetchTarball "https://github.com/NixOS/nixpkgs/archive/0f8f64b54ed07966b83db2f20c888d5e035012ef.tar.gz";
   pkgs = import nixpkgs { config = {}; overlays = []; };
 
   # Single source of truth for all tutorial constants
   database = "postgres";
   schema        = "api";
   table         = "todos";
   username      = "authenticator";
   password      = "mysecretpassword";
   webRole       = "web_anon";
   postgrestPort = 3000;
 
   # NixOS module shared between server and client
   sharedModule = {
     # Since it's common for CI not to have $DISPLAY available, explicitly disable graphics support
     virtualisation.graphics = false;
   };
 
 in 
   pkgs.nixosTest {
     # NixOS tests are run inside a virtual machine, and here you specify its system type
     system = "x86_64-linux";
     name = "postgres-test";
     nodes = {
       server = { config, pkgs, ... }: {
         imports = [ sharedModule ];
 
         networking.firewall.allowedTCPPorts = [ postgrestPort ];
 
         services.postgresql = {
           enable = true;
 
           initialScript = pkgs.writeText "initialScript.sql" 
             create schema ${schema};
 
             create table ${schema}.${table} (
                 id serial primary key,
                 done boolean not null default false,
                 task text not null,
                 due timestamptz
             );
 
             insert into ${schema}.${table} (task) values ('finish tutorial 0'), ('pat self on back');
 
             create role ${webRole} nologin;
             grant usage on schema ${schema} to ${webRole};
             grant select on ${schema}.${table} to ${webRole};
 
             create role ${username} inherit login password '${password}';
             grant ${webRole} to ${username};
           ;
         };
 
         users = {
           mutableUsers = false;
           users = {
             # For ease of debugging the VM as the `root` user
             root.password = "";
 
             # Create a system user that matches the database user so that you
             # can use peer authentication. The tutorial defines a password,
             # but it's not necessary.
             "${username}".isSystemUser = true;
           };
         };
 
         systemd.services.postgrest = {
           wantedBy = [ "multi-user.target" ];
           after = [ "postgresql.service" ];
           script =
             let
               configuration = pkgs.writeText "tutorial.conf" 
                   db-uri = "postgres://${username}:${password}@localhost:${toString config.services.postgresql.port}/${database}"
                   db-schema = "${schema}"
                   db-anon-role = "${username}"
               ;
             in "${pkgs.haskellPackages.postgrest}/bin/postgrest ${configuration}";
           serviceConfig.User = username;
         };
       };
 
       client = {
         imports = [ sharedModule ];
       };
     };
 
     # Disable linting for simpler debugging of the testScript
     skipLint = true;
 
     testScript = 
       import json
       import sys
 
       start_all()
 
       server.wait_for_open_port(${toString postgrestPort})
 
       expected = [
           {"id": 1, "done": False, "task": "finish tutorial 0", "due": None},
           {"id": 2, "done": False, "task": "pat self on back", "due": None},
       ]
 
       actual = json.loads(
           client.succeed(
               "${pkgs.curl}/bin/curl http://server:${toString postgrestPort}/${table}"
           )
       )
 
       assert expected == actual, "table query returns expected content"
     ;
 }

Unlike the previous example, the virtual machines need an expressive name to distinguish them. For this example we choose `client` and `server`.

Set up all machines and run the test script:

 nix-build postgrest.nix
 ...
 test script finished in 10.96s
 cleaning up
 killing client (pid 10)
 killing server (pid 22)
 (0.00 seconds)
 /nix/store/bx7z3imvxxpwkkza10vb23czhw7873w2-vm-test-run-unnamed